¹²C(²²Ne, ¹⁸N) **1998Og04,1999Og03**

Type Author Citation Literature Cutoff Date

R. Spitzer, J. H. Kelley ENSDF 30-Jun-2021

1998Co37: 18 N ions, produced by fragmenting a 22 Ne beam on a 12 C target, were selected using the LISE3 spectrometer and implanted into a a 40 K cooled Mg crystal oriented along β =1.5°. Using the Level Mixing Resonance method to interpret the variation asymmetry of β radiation with field strength 0-2000 Gauss indicated a the value eQ=3.2 e-fm² 3.

1998Og04,1998OgZY; 18 N ions were produced at RIKEN by fragmenting a 110 MeV/nucleon 22 Ne beam on a 12 C target and selecting 18 N using the RIPS fragment separator. Optimum settings indicated 2.2% polarization at θ =3.5° 18 N emission angle. The beam was implanted into a Pt stopper foil that was held at 30 K. Using standard β -NMR techniques, μ =0.3279 μ N 17 was determined. A similar scan using a single crystal Mg stopper resulted in a determination of the quadrupole coupling constant eqQ/h=73.2 kHz 18 N. A prelinary value Q=12.1 mb 12 was determined by comparison with Q(12 N) and related field gradients. See also (2000AsZZ).

1999Og03,1999OgZV: In an expansion of results presented in (1998Og04), further experimental details are given. The decay rate was determined from analysis of the β -ray time spectrum. $T_{1/2}$ =620 ms 14 was obtained. In this work, the field gradients determined for ^{12}N and ^{14}N and their Q values were considered resulting in Q=12.3 mb 12. Results are compared with perviously reported values and shell model predictions.

¹⁸N Levels

E(level) J^{π} $T_{1/2}$ Comments

0 I^{-} 620 ms I^{4} μ =0.3279 I^{3} (1998Og04) Q=12.3 I^{2} (1999Og03) J^{π} : From Adopted Levels. $T_{1/2}$: From (1999Og03).